Sobolev Norms of Automorphic Functionals

نویسندگان

  • Joseph Bernstein
  • Andre Reznikov
  • A. Reznikov
چکیده

It is well known that Frobenius reciprocity is one of the central tools in the representation theory. In this paper, we discuss Frobenius reciprocity in the theory of automorphic functions. This Frobenius reciprocity was discovered by Gel’fand, Fomin, and PiatetskiShapiro in the 1960s as the basis of their interpretation of the classical theory of automorphic functions in terms of the representation theory (eventually, of adelic groups, see [7, 8, 9]). Later, Ol’shanski gave a more transparent proof of it (see [14]). However, in the subsequent rapid development of the theory of automorphic functions, Frobenius reciprocity was barely noticeable. We believe that this is due to the incompleteness of the above-mentioned results. In this paper, we prove a general theorem (see Theorem 1.1), which we view as a quantitative version of Frobenius reciprocity. We then illustrate it by looking into the example of SL(2,R). We think that these methods will play a more prominent role in the theory of automorphic functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalence of K-functionals and modulus of smoothness for fourier transform

In Hilbert space L2(Rn), we prove the equivalence between the mod-ulus of smoothness and the K-functionals constructed by the Sobolev space cor-responding to the Fourier transform. For this purpose, Using a spherical meanoperator.

متن کامل

Norms of Geodesic Restrictions for Eigenfunctions on Hyperbolic Surfaces and Representation Theory

We consider restrictions along closed geodesics and geodesic circles for eigenfunctions of the Laplace-Beltrami operator on a compact hyperbolic Riemann surface. We obtain a non-trivial bound on the L-norm of such restrictions as the eigenvalue tends to infinity. We use methods from the theory of automorphic functions and in particular the uniqueness of invariant functionals on irreducible unit...

متن کامل

First-Order System Least Squares (FOSLS) for Spatial Linear Elasticity: Pure Traction

This paper develops first-order system least-squares (FOSLS) functionals for solving the pure traction problem in three-dimensional linear elasticity. It is a direct extension of an earlier paper on planar elasticity [Z. Cai, T. A. Manteuffel, S. F. McCormick, and S. V. Parter, SIAM J. Numer. Anal., 35 (1998), pp. 320–335]. Two functionals are developed, one involving L norms of the first-order...

متن کامل

Applications of a Pre–trace Formula to Estimates on Maass Cusp Forms

By using spectral expansions in global automorphic Levi–Sobolev spaces, we estimate an average of the first Fourier coefficients of Maass cusp forms for SL2(Z), producing a soft estimate on the first numerical Fourier coefficients of Maass cusp forms, which is an example of a general technique for estimates on compact periods via application of a pre–trace formula. Incidentally, this shows that...

متن کامل

Γ-convergence, Sobolev norms, and BV functions

We prove that the family of functionals (Iδ) defined by Iδ(g) = ∫∫ RN×RN |g(x)−g(y)|>δ δ |x− y|N+p dx dy, ∀ g ∈ L(R ), for p ≥ 1 and δ > 0, Γ-converges in L(R ), as δ goes to 0, when p ≥ 1. Hereafter | | denotes the Euclidean norm of R . We also introduce a characterization for BV functions which has some advantages in comparison with the classic one based on the notion of essential variation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002